Novel Behavioral and Developmental Defects Associated with Drosophila single-minded

Jan Pielage,* Georg Steffes,* Dan C. Lau,† Beth A. Parente,† Stephen T. Crews,† Roland Strauss,‡ and Christian Klämbt*1

*Institut für Neurobiologie, Universität Münster, Badestrasse 9, D-48149 Münster, Germany; †Department of Biochemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280; and ‡Theodor-Boveri-Institut für Biowissenschaften, LS Genetik und Neurobiologie, Am Hubland, D-97074 Würzburg, Germany

In Drosophila, the development of the midline cells of the embryonic ventral nerve cord depends on the function of the bHLH-PAS transcription factor Single-minded (Sim). The expression domain of sim, however, is also found anterior and posterior to the developing ventral cord throughout the germ band. Indeed, mutations in sim were identified based on their characteristic cuticle phenotype. Eight abdominal segments (A1–A8) can be easily seen in the larval cuticle, while three more can be identified during embryogenesis. Cells located in A8–A10 give rise to the formation of the genital imaginal discs, and a highly modified A11 segment gives rise to the anal pads that flank the anus. sim is expressed in all these segments and is required for the formation of both the anal pads and the genital imaginal discs. A new temperature-sensitive sim allele allowed an assessment of possible postembryonic function(s) of sim. Reduction of sim function below a 50% threshold leads to sterile flies with marked behavioral deficits. Most mutant sim flies were only able to walk in circles. Further analyses indicated that this phenotype is likely due to defects in the brain central complex. This brain region, which has previously been implicated in the control of walking behavior, expresses high levels of nuclear Sim protein in three clusters of neurons in each central brain hemisphere. Additional Sim localization in the medullary and laminar neurons of the optic lobes may correlate with the presence of ectopic axon bundles observed in the optic lobes of sim mutant flies.

© 2002 Elsevier Science (USA)

Key Words: single-minded; Drosophila; CNS; midline; genital disc; brain; behavior.

INTRODUCTION

First signs of Drosophila nervous system development are evident only a few hours after fertilization during the cellular blastoderm stage. At this time point, maternal gene functions have divided the embryo into the three germ layers (Campos-Ortega and Hartenstein, 1997). The mesodermal anlage is separated from the lateral neurogenic region by a very special set of cells, which have been recognized as an important part of the ventral nerve cord some 100 years ago (Escherich, 1902). Based on morphological criteria, these cells were later called mesectodermal cells (Poulson, 1950). These are the first neural cells to be specified (Crews et al., 1988) and are initially arranged in a single cell-wide row with about four cells per hemisegment. Following gastrulation, when the mesoderm has invaginated into the interior of the embryo, the mesectodermal cells intermingle at the ventral midline and move into the interior of the embryo. Here, they form a mitotic domain and generate a small number of neuronal and glial cells located at the midline of the developing ventral cord (Bos sing and Technau, 1994; Foe, 1989; Klämbt et al., 1991; Thomas et al., 1988). A number of studies have shown that the midline cells are distinct from the remaining neural cells in a number of ways (Crews, 1998; Jacobs, 2000).

The CNS midline cells exert many prominent functions during CNS development. The loss of all CNS midline cells, which are the source of attractive (Netrins) and repulsive (Slit) axonal guidance cues, leads to a dramatic axonal patterning phenotype (Brose and Tessier-Lavigne, 2000; Kidd et al., 1999; Mitchell et al., 1996; Rothberg et al., 1988, 1990; Thomas et al., 1988). In addition, the CNS midline cells regulate directed cell migration toward and

1 To whom correspondence should be addressed. Fax: +49 251 832 4686. E-mail: klaembt@mail.uni-muenster.de.
away from the midline (Bashaw and Goodman, 1999; Kidd et al., 1999; Kinrade et al., 2001; Kramer et al., 2001). Besides directing the migration of growth cones and cells, inductive signals emanating from the CNS midline regulate the development of cortical neurons and certain mesodermal cells (Chang et al., 2000; Lüer et al., 1997; Mennen et al., 1997; Zhou et al., 1997). These findings underpin the role of the CNS midline as an important organizing center during normal embryonic development.

The special appearance and the strategic position of CNS midline cells are reflected by the fact that their cell fate is determined very early by the action of neurogenic genes (Mennen and Klämbt, 1994; Morel and Schweisguth, 2000). The activation of Notch results in the expression of the gene sim, which subsequently serves as a master regulatory gene of CNS midline development (Crews et al., 1988; Muralidhar et al., 1993; Nambu et al., 1990, 1991; Thomas et al., 1988). Loss of sim function results in a loss of all CNS midline cells, whereas ectopic expression of sim within the nervous system is able to induce the midline differentiation program (Nambu et al., 1991; Sonnenfeld and Jacobs, 1994). Depending on the segmental position, sim is able to specify glial as well as neuronal midline cell types (Mennen et al., 1997).

Two promoters direct the expression of two alternative sim transcripts. sim expression starts at the onset of gastrulation in the mesectodermal cells flanking the presumptive mesoderm. Initially, sim is expressed by all midline cells; however, during midembryogenesis, expression becomes restricted to the midline glia. In addition, a complex pattern of sim expression has been described in the embryonic brain (Therianos et al., 1995). Outside the nervous system, sim expression has been reported in a subset of ventral muscle precursor cells (Lewis and Crews, 1994). sim expression extends beyond the developing ventral nerve cord to the abdominal-most segmental units. The function of these sim-expressing cells is unknown.

sim encodes a basic-helix-loop-helix-PAS (bHLH-PAS) protein that, when binding to an appropriate interaction partner, directly activates transcription. Sim can also repress gene expression in the midline cells by activating the transcription of repressive factors (Estes et al., 2001). To date, two direct interaction partners have been described: Dichaete (Fish-hook), which associates with the PAS domain of Sim, and the bHLH-PAS protein encoded by tango (tgo) (Ma et al., 2000; Ohshiro and Saigo, 1997; Sonnenfeld et al., 1997; Soriano and Russell, 1998). Mutant tgo embryos display only relatively mild defects during embryonic CNS development (Ohshiro and Saigo, 1997; Sonnenfeld et al., 1997). Unlike sim, however, tgo is deposited maternally in the egg, and this strong maternal contribution is likely to compensate the early requirement of tgo. No germine clones have yet been described. Clonal analyses demonstrate that tgo is required for adult antennal and tarsal development. Here, it does not interact with Sim but with the bHLH-PAS protein Spineless (Emmons et al., 1999). To date, no function of sim has been described during postembryonic development.

Here, we report the identification of a temperature-sensitive sim mutation. Our data show that sim expression within the developing brain is important to correctly specify the formation of the central complex, a part of the brain required to control the walking behavior of the fly. In addition, we show that sim is required outside the CNS to correctly pattern the genital discs as well as the anal pad anlage.

MATERIALS AND METHODS

Genetics

Among the mutations identified in a large-scale EMS mutagenesis (Hummel et al., 1999), we identified the sim^{ts} mutation. The mutation was subsequently separated from other lethal hits found on this particular chromosome by recombination against rucula chromosomes. The amorphic sim^{ts} allele and the enhancer trap line P{lacW[ts]esc^{B7-2-22}} were obtained from the Bloomington Stock Center.

Behavioral Analyses

Walking was quantified in Buridan’s paradigm (Götz, 1980). Wings were clipped under cold anesthesia (4°C) in order to ensure that flies will only walk. Flies were then given at least 4 h to recover in single-fly containers with access to water before they were placed on an elevated circular disc (diameter 85 mm) between two opposing and inaccessible landmarks in an otherwise uniform bright white surrounding (3000 cd m^{–2}). The dark vertical landmarks were 100 mm away from the center of the disc and appeared under viewing angles of 11° horizontally and 58° vertically. The disc was surrounded by a water-filled moat. The walking-trace of each fly was recorded for 15 min by using a video-based computerized tracking system (time resolution 5 frames s^{–1}). The traces were evaluated off-line with regard to walking speed, activity, walked distance, and orientation toward the landmarks as described (Strauss and Pichler, 1998). Walking speed is calculated for every transition of the fly from one landmark to the other. Start and end of a transition are defined by the crossing of parallel lines which are perpendicular to the connecting axis of the two landmarks and which intersect with it at +33 mm and −33 mm as seen from the center of the disk. The mean speed of all transitions within 15 min is called the walking speed of the individual fly. Walking activity is defined as the fraction of time spent walking instead of resting or grooming. Walked distance is the total length of the piecewise linear interpolation of the fly’s track given by successive positions sampled every 0.2 s. Orientation: For each path increment, also the angular deviation from the direct path toward each of the two landmarks is calculated. The smaller of the two angular values is always integrated into a frequency histogram. At the given sampling rate, each fly contributes 4500 orientation values in a 15-min measurement, that were integrated in a frequency histogram of 5° bin width. For a direct comparison, the same four evaluations were also applied to random search measurements, where the flies saw no landmarks.

Leg coordination of sim flies was inspected on a walking analyzer as described (Strauss, 1998). Briefly, the fly walks on a glass plate which is overlaid with a layer of red laser light invisible to the
fly. The light carpet is so thin that only legs are illuminated which are either in contact to the ground or near touch-down. The points of ground contact are registered by cameras underneath the glass plate and the temporal and spatial aspects of stepping are analyzed off-line on a PC.

Molecular Analyses

Total RNA was extracted from different stages of y w^6^1 by using Qiashredder and RNeasy kits (Qiagen). RNA was treated with RNase-free DNase I (RN: Promega) to remove contaminating genomic DNA. Stages and dissected tissues were: (1) 0-18 h (AEL) embryos, (2) wandering third instar larvae, (3) wandering third instar larval brains, (4) pupae, and (5) adults (male and female combined). Synthesis of cDNA was performed using Reverse Transcriptase and the primer, 5'-CCGGTGATGTGCG--3', which corresponds to the 3' end of sim exon 4. PCR was carried out by using the primer pair, 5'-GCTTGGCTCATC-GCCTGGGGCTCATC--CTGGTTGATGTGCG-3' (region of exon 4 just 5' to the primer used for cDNA synthesis). The primer pair was derived from two exons, so that amplification of contaminating genomic DNA could be distinguished from the amplified products derived from RT-PCR of RNA. Two controls were included. Genomic DNA was PCR amplified by using the primers described above to yield a 558-bp fragment. Presence of this band in RT-PCR-amplified Drosophila RNA samples would indicate the presence of contaminating genomic DNA. Positive control sample involved RT-PCR amplification of RNA synthesized from a full-length sim cDNA clone transcribed in vitro with SP6 RNA Polymerase. This yielded a DNA fragment of 237 bp and corresponds to the RT-PCR-amplified products derived from Drosophila RNA. PCR products were subjected to agarose gel electrophoresis, stained with ethidium bromide, and visualized for fluoresence.

Sequence Analysis of sim^[14-47] Mutant sim Gene

The complete coding sequence of the sim gene from sim^[14-47] homozygous mutant adult flies was determined by using PCR amplification of isolated genomic DNA sequence followed by direct sequencing of the PCR products. Multiple primer pairs (data provided upon request) and Taq polymerase were used to PCR amplify DNA containing exons 2-8, which contain all of the sim coding sequence. Fragments were gel purified and sequenced by using an ABI automated sequencer. Each fragment was independently amplified multiple times, and both strands were sequenced.

Immunohistochemistry

Embryos were collected and stained as described previously (Hummel et al., 1997). Wandering third instar larvae were dissected in PBT and fixed in 4% formaldehyde on ice for 1 h. Antibody staining was performed as described (Patel et al., 1987). Antibody dilutions were used as follows: rat anti-Sim, 1:100; mAb anti-Tgo, 1:1; mAb anti-Eve, 1:5; mAb BP102, 1:50; mAb anti-ELAV (9F8A9; from Developmental Studies Hybridoma Bank), 1:100; and rabbit anti-β-galactosidase (Cappel), 1:2000. Larval brains were dissected in PBS after antibody staining, mounted in Aqua-Poly/Mount (Polysciences, Inc.), and visualized on a Zeiss LSM 510 confocal microscope. Images were processed by using the Zeiss LSM Browser and Adobe Photoshop.

Histology

Serial 7-μm-thick paraffin sections of adult heads were prepared in frontal orientation by using the collar method (Ashburner, 1989; Heisenberg and Böhl, 1979). The brains were inspected under a fluorescence microscope.

RESULTS

Identification of a Temperature-Sensitive sim Allele

Mutations in the gene sim result in the loss of all CNS midline cells. Subsequently, all CNS axon tracts collapse at the CNS midline (Crews et al., 1988; Klämbt et al., 1991; Sonnenfeld and Jacobs, 1994; Thomas et al., 1988; Figs. 1A and 1B). All sim mutations isolated to date lead to this typical CNS phenotype (for review, see Jacobs, 2000). We fortuitously identified a weak sim allele in the mutant collection established recently in the lab (Hummel et al., 1999). The sim^[14-47] mutation was subsequently isolated by standard recombination techniques. In order to avoid background effects, we generally analyzed rh th st cu sim^[14-47] e`st sim^[14-47] e` ca transheterozygous embryos (hereafter referred to as homozygous sim^[14-47] embryos). To test whether the weak CNS phenotype associated with sim^[14-47] results from a temperature-sensitive mutation, we analyzed the embryonic CNS phenotypes of homozygous sim^[14-47] and sim^[14-47]/sim^[19] embryos at 17 and 29°C (Fig. 1).

At the permissive temperature (17°C), the CNS of homozygous sim^[14-47] embryos appeared indistinguishable from wild type embryos (compare Figs. 1A and 1C). Furthermore, homozygous sim^[14-47] flies eclosed (see below). However, sim function was not completely restored at 17°C since, in trans to the null allele sim^[19], a moderate CNS phenotype was detected (Fig. 1D) that is never seen in sim^[19] + embryos. At the restrictive temperature (29°C), homozygous sim^[14-47] embryos developed a strong midline defect. Commissures appeared fused and the connectives were found closer to the midline (Fig. 1E). The embryonic axin pattern phenotype became more severe in sim^[14-47]/sim^[19] embryos raised at 29°C and resembled the amorphic sim phenotype (compare Figs. 1B and 1F). Thus, we conclude that the allele J1-47 represents a temperature-sensitive sim mutation.

The sim^[14-47] Mutant Has a Mutation in the Sim Dimerization Domain

The sim gene from sim^[14-47] homozygous mutant flies was sequenced and compared with the wild-type sim gene (Fig. 2). There was a single amino acid change that occurred at residue 41, resulting in a Ser > Phe substitution. The Sim protein contains a bHLH domain, in which the basic region is required for DNA binding and the HLH domain is required for dimerization to the Tgo bHLH-PAS protein. Ser41 lies within helix 2 of the HLH domain. This residue is conserved among all Sim proteins, including two Drosophil a species and a variety of vertebrate species (Fig. 2). It
is also commonly conserved between related invertebrate and vertebrate bHLH-PAS proteins, including Tracheless, Hypoxia-inducible factors, and the Aryl hydrocarbon receptor. The high degree of conservation in a known functional domain strongly suggests that the Ser > Phe substitution at residue 41 is responsible for the mutant phenotype. The position of Ser41 in the protein suggests a role in influencing protein dimerization, DNA binding, or both (Ferre-D’Amare et al., 1993).

Requirement of single-minded during the Development of the Larval Cuticle

Mutations in the sim gene were also identified based on their larval cuticle phenotype, which is characterized by defective formation of the ventral-most denticles and abnormal anal pad formation (Mayer and Nüsslein-Volhard, 1988).

In the larval cuticle, eight abdominal segments can be easily seen. In the phylotypic stage, the primordia of the
abdominal segments A9 and A10 can be identified. Cells located in A8–A10 contribute to the development of the genital imaginal discs. A highly modified A11 segment gives rise to the anal pads that flank the anus (Jürgens and Hartenstein, 1993). In sim null mutants, the anal pads formed; however, their size appeared reduced compared with wild type, and the anal slit is not developed (Fig. 3B). During development, sim expression was seen abutting the domain of escargot (esg) expression, which initially is expressed in the CNS midline as well (data not shown). At the permissive temperature, homozygous simJ1–47 larvae completely lacked the anal slit (Figs. 3E and 3F, arrow).

How is the defect in anal pad development mediated? During development, sim expression in the midline extends to the posterior end of the germ band, where it demarcates the anterior boundary of the proctodeum (Figs. 4A–4F). As the proctodeum lies within the anal pad, we analyzed possible coexpression with the anal pad marker Even skipped (Eve) (Gorfeinkiel et al., 1999). In stage 11 embryos, a crescent of Eve expression was seen abutting the domain of sim expression at the midline (Figs. 4D–4F). Confocal analyses demonstrated that sim and Eve are never coexpressed. In sim null mutant embryos, the onset of Eve expression in the anal pad anlage was normal; however, Eve expression extends across the ventral midline (Fig. 4G). By the end of embryogenesis, the anal pad is reduced in size in sim mutants compared with wild type (Figs. 4H and 4I). Thus, both the anal pad phenotype of sim mutant larvae and the expression pattern described above suggest that sim-expressing cells contribute to the formation of the anal pads.

sim Is Required for the Development of the Genital Discs

In the abdominal segments A9 and A10, just anterior to the forming anal pads and thus within the expression domain of sim, lies the unpaired genital disc primordium (Hartenstein and Jan, 1992; reviewed in Jürgens and Hartenstein, 1993). To investigate whether sim also affects the formation of these ectodermal derivatives, we used an enhancer trap insertion in the escargot (esg) gene, which labels all imaginal discs anlagen by the end of embryogenesis (Hayashi et al., 1993). In wild type embryos, a field of esg-expressing cells was seen posterior to the forming nervous system (not shown). Following germ band retraction, these cells invaginate into the interior of the embryo. Epidermal cells close the gap left by the delaminated disc progenitor cells, and in stage 16 embryos, a narrow strip of esg-positive cells was seen (Figs. 5A, 5C, and 5E, arrow). In sim mutant embryos, specification of the genital disc anlage is normal as judged by the onset of esg expression. The invagination of the anlage starts normally as well but cannot proceed to its final state. Instead, the presumptive disc cells were found in a large ectodermal fold at the posterior end of the embryo (Figs. 5B, 5D, and 5F, arrow).

Adult Phenotypes Associated with sim

At the permissive temperature, homozygous simJ1–47 flies survived to adulthood; however, both females and males were sterile. A similar phenotype was observed in Df(3R)ryD3/6/simH9 or Df(3R)ryD3/simJ1 flies (see Fig. 7). In the majority of the flies (>90%), no abnormal external phenotypes were detected. The remaining flies showed dramatic external phenotypes lacking genitalia as well as the anus (Figs. 6B and 6D). Instead of forming the anal plate and the external genital organs (vulva, clasper, and penis apparatus),
the tergit and sternit derived from the A8 segment close the flies posteriorly (Figs. 6B and 6D). We also analyzed the internal morphology of the female and male gonads of these flies. In both sexes, only rudiments were found. In sim\(^{J1-47}\) females, tiny gonads developed that were generally not connected to the vulva. Despite the abnormal morphology, oogenesis apparently started normally, but arrested at an early stage (Figs. 6A' and 6B'). This indicates that sim\(^{J1-47}\) does not affect the migration of the primordial germ cells into the developing gonads during embryogenesis. In males, only testis rudiments were found (Figs. 6C' and 6D').

Thus, the main defect in sim\(^{J1-47}\) flies raised at 17\(^\circ\)C appeared to be due to defective genital disc development. The missing anus lead to a blind ending hindgut, whereas gut development itself was not severely affected and malpighian tubules form normally (Fig. 6D'). In addition, the gonads were not connected to the external excretory organs. Due to the lack of any opening, the gut swelled dramatically, which after a few days, lead to the death of the fly.

sim Affects Adult Behavior

To even further reduce the function of sim during development, we analyzed sim\(^{J1-47} / sim^{J1-47}\) animals. At 29\(^\circ\)C, such flies never appeared, which was expected given the severe embryonic CNS phenotype (Fig. 1F). At 17\(^\circ\)C, however, very rare escapers appeared (0.1% of the expected flies, the
flies were sterile and frequently lacked external genitalia and the anal plate, similar to the phenotypes shown by homozygous mutant sim^{11-47} flies. The sterility phenotype may be explained not only by defects in external and internal morphology, but also by misbehavior, as mutant males failed to perform the normal courtship behavior and mutant females ignored wild type males (only flies without external defects were examined).

In addition to abnormal courtship behavior, surviving sim^{11-47}/sim^{69} flies showed an extreme walking phenotype. The majority of the flies analyzed only walked in circles...
In order to quantify a possibly existing residual orientation toward the landmarks, which might have been obscured by the circling behavior, the same individuals were monitored for an additional 15 min in the same arena but without landmarks. Normal flies then showed area-covering random search behavior with an increasing mean free path (Schuster and Götz, 1994). Again, sim$^{1-47}$/simH9 flies individually preferred either a clockwise or counterclockwise sense and, compared with wild type, showed reduced walking activity and speed (Figs. 7I and 7J). In Fig. 7F, the mean difference in orientation behavior between the Buridan behavior and random search behavior is shown for sim and wild type flies. Whereas wild-type flies showed the expected strong preference for the landmarks (i.e., small error angles are found more frequently than large error angles; see Materials and Methods), there was no detectable difference between Buridan and random search data in sim$^{1-47}$/simH9 flies. In summary, we find no measurable influence from visual landmarks on the orientation behavior of sim mutant flies.

We next addressed the important question whether sim$^{1-47}$/simH9 flies are blind by exposing them to optomotor stimuli. A striped drum consisting of six dark and six interspaced bright stripes rotated around the walking platform. All stripes were equally broad and equally spaced (i.e., pattern wavelength 60°; contrast 0.94; 30 full rotations were shown in 150 s). Wild-type flies turned in the sense of the pattern rotation in an attempt to compensate for the seen rotation (which is >90% under these conditions; Strauss et al., 1997). In most sim flies, the spontaneous circling behavior was weakly modulated by the optomotor stimulus. Pattern rotation in their preferred direction enhanced their turning tendency, and stimulation against their preferred direction either decreased their turning tendency or even reversed it into the stimulus direction. For example, two spontaneously counterclockwise circling individuals showed 14 (16) counterclockwise rotations for 30 counterclockwise rotations of the pattern, whereas they performed 8 counterclockwise (2 clockwise) rotations for 30 rotations in the nonpreferred clockwise sense. Two of 11 inspected sim$^{1-47}$/simH9 flies did not react to optomotor stimuli at all. We thus conclude that most of the sim flies were not entirely blind.

The mean track length of sim$^{1-47}$/simH9 flies decayed significantly with every 3-min bin (Fig. 7G). Regardless of any landmarks, sim flies started out with about half the wild type track length and then walked progressively less. Wild type flies, in contrast, tended to produce a more constant track length, often over many hours, after their initial arousal from handling has decayed. Interestingly, females appeared to be affected more severely by the sim mutation. Detailed analysis of the walking traces using a laser carpet (Strauss, 1998) suggested that leg movement is coordinated normally; however, step length differs between the right and left body side (data not shown).
Histological Analyses of sim Animals

Consistent with the behavioral defects, we noted alterations in the normal brain structure. Serial frontal sections were examined for all of the sim^{11-47}/sim^{H9} flies in which behavior was assessed. The series were inspected by using autofluorescence conditions under which all neuropil have a blue-green and the pericarya a bright green to yellow.
appearance (Fig. 8). In particular, we noted defects associated with the inner chiasm of the optic lobes and in the central complex (CX), a structure that spans the protocerebral hemispheres and develops from the larval interhemispheric commissure during larval and pupal stages (Hanesch et al., 1989). The CX is composed of the four

FIG. 7. Walking and orientation behavior phenotype. (A–E) Walking traces. Single flies walked for 15 min on an elevated water-surrounded platform of 85 mm diameter. sim¹–⁴⁷/sim^{H9} flies walk in circles (A–D) despite the two inaccessible landmarks (indicated by the vertical bars) which keep wild type flies alternating between them for many hours (E, wild-type Oregon-R). sim¹–⁴⁷/sim^{H9} flies have a preferred side to which they almost always turn. (A) Five-minute walking traces from an extremely tight turning sim fly (arrowheads point to very high frequency turning points). (B, C) Medium wide and a wide turning mutant sim fly. (D) Exceptional example of a sim¹–⁴⁷/sim^{H9} fly producing a measurable orientation component toward the landmarks. (F) Mean occurrence frequency of certain error angles between the actual walking direction (obtained every 0.2 s) and the straight direction toward the nearer, in angular terms, of the two landmarks (Buridan’s paradigm) minus the respective frequency distribution for random search behavior in the absence of landmarks. N = 11 flies per test group (sim¹–⁴⁷/sim^{H9}, wild type Oregon-R) were measured in random order each for 15 min in the Buridan situation and for 15 min in the empty arena. On average, there is no measurable influence from the landmarks on the orientation behavior of mutant sim flies. (G) Mean track length per 3-min bin. Same experimental groups as in (F). Regardless of the presence or absence of landmarks, sim mutant flies start with about half the wild-type track length and decay significantly, whereas wild type flies tend to produce a more constant track length as soon as their initial arousal from handling has decayed. The overall deficits in the track length of mutant sim flies are due to a drastically reduced walking speed (H) and to a bisected activity (I; mean percentage of time spent walking). (J) Mutant sim female flies are more strongly affected than mutant sim male flies. An insignificantly lower walking speed and lower activity in females combine to a significant deficit in mean walked distance when compared with male sim flies (t-test, two-tailed: P < 0.05). All error bars indicate SEMs.
neuripilar regions called the protocerebral bridge (pb), fan-shaped body (fb), ellipsoid body, and paired noduli. In 70% of the 19 inspected sim brains, the pb as the posterior-most CX neuropil was markedly thinner at the sagittal midplane and generally less compact than the intact wild type pb (Figs. 8A and 8B). The pb consists of a linear array of 8 bilaterally paired glomeruli. Fibers might be missing in sim flies, which normally run along the pb and connect the paired glomeruli in a highly ordered fashion (Hanesch et al., 1989). The fb, the largest of the CX neuropils, was divided sagittally in its posterior shell in 15% of the sim brains (Figs. 8C and 8D). The ellipsoid-body and noduli were not affected by the sim mutation.

The inner chiasm of the optic lobes connects the medulla with the lobula and the lobula plate. In 40% of the inspected sim flies, ectopic fiber bundles were found to cut into the lobula either unilaterally or bilaterally (Figs. 8E and 8F). Such ectopic bundles are never observed in wild-type optic lobes (Brunner et al., 1992). We were unable to directly correlate the gross anatomical salience of the CX or optic lobe defects with the severity of the walking problem or the degree of circling. Flies with a unilateral inner chiasm defect circled as consistently as flies with no visible defect. As an exception, one of the putatively blind flies mentioned above had the most severe optic lobe defects on both sides.

Postembryonic Expression of sim in the CNS

The above described phenotypes suggest that sim is expressed postembryonically. This was initially examined by RT-PCR experiments (see Materials and Methods), which demonstrated that sim transcripts were present throughout fly development (Fig. 9). Transcripts were barely detected in whole third instar larvae, but were abundant in dissected larval brains (Fig. 9).

Spatial expression of Sim was further examined by immunostaining larvae and adult flies with Sim antibodies, followed by examination with confocal microscopy. In the larval ventral nerve cord, sim is expressed in the midline glial cells (Fig. 10A). These cells, which can easily be identified by their characteristic morphology (Awad and Truman, 1997; Stollewerk et al., 1996), express Sim during embryonic CNS development (Crews et al., 1988; Thomas et al., 1988).

Similar to its distribution in embryonic cells, Sim protein was confined to cell nuclei (Ward et al., 1998). During embryonic development, nuclear localization of the Sim protein requires heterodimerization with the Tgo bHLH-PAS protein. Tgo is found in all cells and is localized to the cytoplasm in the absence of a partner bHLH-PAS protein, such as Sim (Ward et al., 1998). In the presence of Sim, the Sim:Tgo complex translocates to the nucleus, and immunostaining with Anti-Tgo shows prominent nuclear staining in those cells. To analyze whether Sim may interact with Tgo in the larval midline cells and to obtain a validation control for the Sim immunostaining, we double-stained larval nerve cords with anti-Sim and anti-Tgo antibodies. The results revealed a complete colocalization of nuclear Sim and Tgo expression in the CNS midline (Fig. 10C).

Examination of larval brain staining revealed additional sites of Sim localization. Sim was prominently expressed in the lamina and the medulla, which are synaptic targets of photoreceptor axons (Fig. 10D). Again, a colocalization of Tgo was found (Figs. 10E and 10F). Examination of the central brain, which has been implicated in the control of the walking behavior, identified two clusters of Sim-positive cells, one on each side of the midline (Figs. 10I and 10J). Each cluster has three groups of cells that are not contiguous. The two anterior-most clusters showed higher levels of Sim protein than the posterior-most cluster (Fig. 10J). These cells may be important for the locomotor defects of mutant sim;//sim flies. Despite the fact that sim//sim flies are probably able to see (see above), Sim expression in the optic lobe might nevertheless contribute to the behavioral deficits. There also exist smaller, less distinct, groups of Sim-expressing cells in the anterior of the brain (not shown).

Thus, the temporal and spatial expression pattern of sim support a postembryonic function of the gene. The availability of the temperature-sensitive sim allele could in principle be used to address this question. However, since only very few sim//sim flies eclosed even at the permissive temperature, we could only analyze sim//sim flies. Flies were crossed at the restrictive temperature (29°C) in 24-h intervals. As long as the shift to the restrictive temperature occurred after embryogenesis, normal numbers of flies eclosed, indicating that postembryonic functions of sim do not affect viability.

DISCUSSION

The gene sim acts as a master regulatory gene controlling midline development in the ventral nerve cord of Drosophila. In fact, it was one of the first genes associated with such an important function during cell-type specification. The function of sim outside the nerve cord has been known for a long time but was never investigated in much detail. Here, we report the identification of a temperature-sensitive sim mutation that demonstrates a requirement of sim during genital imaginal disc and anal pad development. In addition, behavioral deficits are associated with sim function. Most importantly, we noted a walking defect that is likely due to a disruption of the central brain complex development in conjunction with a developmental defect found in the inner chiasm of the optic lobes.

Embryonic Function of sim

sim expression is first evident during the cellular blastoderms. In a strip of cells flanking the mesodermal
anlage. The majority of these cells will later divide to generate the neurons and glial cells found at the midline of the ventral nerve cord. It is important to note, however, that sim expression exceeds the neurogenic region from which the nerve cord will form. At the posterior, sim expression extends into abdominal segment 10, where it can be detected until end of stage 11. The fate of these cells is presently unknown. Possibly, the ectodermal midline cells provide inductive signals influencing the developing neighboring tissues, which appears to be a more general feature of the midline cells. Within the CNS, the midline cells act as an organizing center controlling the patterning of axons by providing attractive and repulsive cues. Furthermore, the midline cells regulate the number and differentiation of cortical neurons and mesodermal cells (Chang et al., 2000; Lüer et al., 1997; Menne et al., 1997; Zhou et al., 1997).

The anal pad anlage can be labeled by Eve expression (Gorfrinkiel et al., 1999) and forms immediately posterior to Sim-expressing cells. In sim mutants, the Eve expression domain shifts toward the midline and meets at the midline. Possibly, the gap in Eve expression in wild type embryos allows the formation of the anal slit. In sim mutants, the posterior midgut invaginates normally and the proctodeum initially forms. However, during later stages, the cells that

FIG. 8. Structural defects in the adult sim brain. Frontal 7-μm-thick sections through wild type brains (A, C, E) and sim^{1-47}/sim^{H9} brains at comparable levels (B, D, F). Dorsal is up. Under autofluorescence conditions, all neuropil appears in darker green and the pericarya in bright green-yellow. (A, B) In 70% of the inspected sim brains, the protocerebral bridge (pb) of the central complex was markedly thinner and less compact than a wild type pb. Arrowheads indicate the thinnest part at the sagittal midplane. (C, D) The fan-shaped body (fb) of the central complex was divided posterior–sagittally in 15% of the sim brains. Arrowheads indicate the dorsal-most extents of the fb. (E, F) The inner chiasm of the optic lobes (only right side is shown) is situated between the medulla (me) and the lobula (lo). The ventral and dorsal ends of the chiasm region are indicated by open brackets. The inner chiasm was disordered either unilaterally or bilaterally in 40% of the sim brains. Axon bundles take an abnormal path into the distal lobula, cutting into this neuropil to varying depths (arrowheads). Such bundles are never observed in wild type optic lobes. Scale bars indicate 20 μm; (A–D) are on the same scale as (C); the bar in (E) applies also to (F).
will give rise to the anus will die and thus prevent the external opening of the hindgut.

What is the function of the ventral midline during genital disc development? In both female and male flies, the sexually dimorphic terminalia are formed by a common genital disc comprising three primordia (Sanchez and Guerrero, 2001). The female genital primordium is derived from the 8th abdominal segment, the male genital primordium from the 9th abdominal segment, and the anal primordium from the 10th and 11th abdominal segments. In both sexes, the anal primordium will develop, whereas depending on the sex of the animal, either the male or the female primordium will develop (Sanchez and Guerrero, 2001). The definition of the genital disc anlage does not appear to be affected in sim mutants, but the subsequent delamination from the ectoderm is abnormal. In wild type embryos, the genital disc anlage forms just posterior to the developing ventral nerve cord. Following germ band retraction, the ventral nerve cord retractors, and concomitantly, the genital disc anlage delaminates from the ectoderm. At present, our analyses do not allow us to discriminate whether the genital disc phenotype found in mutant sim embryos is an indirect consequence of the nerve cord condensation defect or whether it is due to the loss of sim expression in the genital disc primordium.

sim Function during Adult Stages

The temperature-sensitive mutation sim J1–47 allowed us to address the question whether sim is required in larval or adult stages. Following the reduction of sim function, a number of interesting phenotypes emerged. The sterility phenotype displayed by the hypomorphic sim allele J1–47 as well as the amorphic mutation sim H9 in trans to deficiencies affecting only one of the two promoters (Fig. 8) demonstrated that these phenotypic traits are indeed due to a reduction in the level of sim function. The sterility phenotype is likely to be a direct consequence of abnormal genital
FIG. 10. Sim protein expression in the larval CNS. Third instar larval brains and ventral nerve cord (vnc) were dissected from third instar larvae, stained with antibodies, and examined by confocal microscopy. (A–C) Larval CNS was double-stained with anti-Sim (A; red) and anti-Tgo (B; green). Merge image is shown in (C). Horizontal view of the dorsal surface of the vnc is shown. (A) Sim is found in nuclei of cells that lie along the midline of the vnc (arrow). (B) Tgo is present in the cytoplasm of all vnc cells, but accumulates in nuclei of only the midline cells (arrow). (C) Merge image shows overlap of Sim and Tgo nuclear staining in the midline cells (arrow). (D–F) Dissected optic lobe of larval brain double-stained with anti-Sim (D) and anti-Tgo (E). Merge image is shown in (F). (D) Nuclear Sim staining is observed in cells of the lamina (arrows) and medulla (arrowheads). (E) Tgo is present in the nuclei of the lamina (arrows) and medulla (arrowheads) and present in the cytoplasm elsewhere. (F) The merge image shows that nuclear Sim and Tgo completely overlap. (G) Optic lobe from a PCNA-GFP larva stained with anti-Sim (red) and visualized for GFP (green). The GFP is expressed in the proliferation centers of the optic lobe, including...
A hallmark of mutants affecting the CX was a slower mean and maximum walking speed and a hallmark of mutants affecting the central complex (CX) between the protocerebral brain hemispheres serves as a higher center (Heisenberg and Böhl, 1979; Strauss and Heisenberg, 1993). A hallmark of mutants affecting the CX could be due to a loss of motoneurons in the ventral nerve cord or it could be due to disruption of higher centers that coordinate walking.

An extended analysis of the walking behavior in different structural brain mutants showed that the central complex (CX) affects behavior with a balanced frequency of left and right turns in the arena situation. They would show random-search behavior with a balanced frequency of left and right turns.

Why do sim$^{11-47}$/sim19 flies circle? First of all, circling in only one direction is not the normal behavior of blind flies in the arena situation. They would show random-search behavior with a balanced frequency of left and right turns (e.g., no-receptor-potential A44; data not shown). Secondly, we assume that most sim flies are not entirely blind since most of them reacted, at least weakly, to optomotor stimuli. sim flies are not the first example of circling flies. In the screen for locomotor mutants, the CX-defective mutant C31 was isolated that frequently walked in waves lines (Strauss and Trinath, 1996). C31 function was subsequently studied in mosaics that were generated by using the gnandromorph technique. When one half of the body, including the head, was mutant, the flies were unable to walk straight and persistently turned toward the defective body side. However, unilateral mutant flies with an intact brain could walk straight pointing toward the role of the CX in balancing left-right motocontrol (Strauss and Trinath, 1996; R.S., unpublished observation). In support of the notion that the CX controls locomotive behavior is the finding that Pax-6/eyeless mutants cause gross morphological CX defects and, concomitantly, severe locomotor deficits (Callaerts et al., 2001).

A mutation in the gene pirouette, which was identified in a screen for genes affecting auditory behavior, shows a similar walking phenotype as described here for the homozygous sim mutation (Eberl et al., 1997). Within the CNS, the optic lobes degenerate but no information about the development of the CX is available. We have not observed any genetic interaction between the two loci (data not shown). To date, only few other mutations have been described that specifically affect the development of the CX. The transcription factor AP2 is not required during embryonic development; however, adult flies display severe disruptions in the CX. It is unknown whether AP2 mutations affect behavior similar to sim (Monge et al., 2001). Other mutants affecting the formation and connectivity of the CX have been described, but no information is available on walking abilities of the different mutant flies (Boquet et al., 2000; Hitier et al., 2001; Simon et al., 1998).

Beside expression within the central complex, we noted high levels of Sim expression in the optic lobes, the lamina, and the medulla, which is in agreement with the mutant phenotype. During larval development, the optic lobes undergo extensive rounds of cell proliferation to give rise to the mature neurons and glia. DNA replication and cell division occur at several discrete sites: the inner proliferative center (IPC), the outer proliferative center (OPC), and the laminar precursor center (LPC) (Hofbauer and Campos-Ortega, 1990; Selleck and Steller, 1991). Since sim expression was observed during the proliferative phase of optic lobe development, we addressed whether sim was expressed in proliferating cells or the postmitotic cells. The proliferative zones were visualized by expression of GFP from a PCNA-GFP transgenic strain (R. Duronio, personal communication). The Drosophila Proliferating Cell Nuclear Antigen (PCNA) gene is encoded by the mus209 locus and is expressed in replicating cells. Since PCNA-GFP and Sim expression do not overlap (Fig. 10G), it appears that Sim is only expressed in postmitotic cells in the optic lobes. Double labeling experiments with glial and neuronal antigens indicate that, within the brain, Sim is expressed only in neuronal cells (Figs. 10J–10L). The optic lobes of sim mutant flies show aberrant axonal projects, but the medullary and laminar neurons are present. This suggests that the role of sim in optic lobe development may be different from its role in controlling formation of the CNS midline cells in embryonic development.
ACKNOWLEDGMENTS

We thank R. Nöhiger for advice and help, John Nambu who carried out early experiments on sim sterile phenotypes, Mary Ward who performed initial Sim larval brain staining, D. Eberl for mutant pirotette flies, C. S. Goodman for antibodies, Bob Duronio, Craig Montell, and Andrew Tomlinson for advice and reagents, and members of the Klämbt lab for help and discussions. This work was supported through a predoctoral fellowship of the Boehringer Ingelheim Fonds (to J.P.), a BMF-BioFuture grant (to R.S.), a grant from NICHD (to S.T.C.), and a grant of the DFG (to C.K.).

REFERENCES

© 2002 Elsevier Science (USA). All rights reserved.

